Green Infrastructure for Coastal Resilience

National Oceanic and Atmospheric Administration (NOAA) Office for Coastal Management

What Is "Resilience"?

Introducing Green Infrastructure for Coastal Resilience

"Resilience is our ability to prevent a short-term hazard event from turning into a long-term community-wide disaster."

Section 1

Green Infrastructure Concepts and Principles

Departamento de Recursos Naturales Y Ambientales

The Terminology Thicket

OFFICE FOR COASTAL MANAGEMENT

NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION

Foundations of Green Infrastructure

Green Infrastructure Concepts and Principles

Landscape approach?

Site-level approach?

OFFICE FOR COASTAL MANAGEMENT NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION

Applicability across Scales

Landscape and watershed

Community and site

Shore and coastal zone

Green Infrastructure Concepts and Principles

Importance of Context

Green Infrastructure Concepts and Principles

Green infrastructure practices are context sensitive.

Why Green Infrastructure?

OFFICE FOR COASTAL MANAGEMENT

NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION

Why Green Infrastructure?

A Hurricane Sandy Story

This is a story of nature's defense against nature's strength, and it plays out behind the sprawling sand dunes that separate the neighboring Jersey Shore communities of Midway Beach and South Seaside Park from the sea.

https://blog.nature.org/science/2017/10/24/saved-by-the-dunes/?src=e.cgs

1/8

Green Infrastructure Concepts and Principles

Aerial views of damage from Hurricane Sandy taken during a search and rescue mission by 1-150 Assault Helicopter Battalion, New Jersey Army National Guard, Oct. 30, 2012. The Seaside Heights' Jet Star roller coaster was left stranded in the ocean after Casino Pier was destroyed by the storm. © Master Sgt. Mark C: Ober/US. Air Force/New Jersey National Guard

community immediately. "The only logical explanation for why we weren't like everywhere else," he says, "was because we had a dune system that was able to protect us from that ocean surge."

Still, while the violence of the storm may not have shown itself in the destruction of their homes, their dunes were a much different story. A quick survey revealed how much sand and vegetation Sandy scoured away from dunes that had – before the storm – been 25 feet tall and 125-feet wide. It was a sobering glimpse of the power of the storm surge the dunes had absorbed and deflected from the homes behind them.

If members of the community had once privately lamented the loss of ocean views as the dunes grew over the years, they don't anymore. "Sandy really was the turning point about the choice between having dunes and having ocean views," says Solazzo. "Now, post-Sandy, it's a different understanding. The community is totally engaged and is totally bought into the idea that these dunes are the lifeline of our existence on a barrier island."

https://blog.nature.org/science/2017/10/24/saved-by-the-dunes/?src=e.cgs

3/8

https://blog.nature.org/science/2017/10/24/saved-by-the-dunes/

Exposure to Coastal Hazards

Green Infrastructure Concepts and Principles

coast.noaa.gov/digitalcoast/tools/flood-exposure

Exposure to Coastal Hazards

Green Infrastructure Concepts and Principles

High Tide Flooding

Storm Surge

Sea Level Rise

coast.noaa.gov/digitalcoast/tools/flood-exposure

Ecosystem Services

Green Infrastructure Concepts and Principles

Natural ecosystems provide multiple benefits to people, including food and water production, improved air and water quality, and recreation and spiritual inspiration.

OFFICE FOR COASTAL MANAGEMENT

Multiple Benefits

- Environmental
- Societal
- Economic

nca2014.globalchange.gov/report/regions/coasts

The Practice of Green Infrastructure

Section 2

Planning Concepts

- Scale
- Service
- Science

Design Concepts

- Multi-functionality
- Resilience
- Sense of place
- Return on investment

Green Infrastructure in Practice

Landscape and watershed

Community and site

Shore and coastal zone

Landscape Design Concepts

The Practice of Green Infrastructure

WORSE **BETTER** Area **Proximity** Connectivity

Watershed Design Concepts

Source: Horsley Witten Group; Center for Watershed Protection

- Preserve native vegetation
- Protect steep slopes
- Buffer stream channels
- Reduce <u>connected</u> impervious cover
- Seek multiple benefits

Watershed Design Concepts

The Practice of Green Infrastructure

https://data.nodc.noaa.gov/coris/library/NOAA/CRCP/NM FS/OHC/Projects/30033/HorsleyWittenGroup2017_Island_ Unpaved_Road_Standards.pdf

Landscape Approaches and Resilience

The Practice of Green Infrastructure

- Recent study* on flood reduction during Hurricane Sandy showed:
 - Coastal wetlands saved more than \$625 million in flood damages
 - Where they exist, coastal wetlands reduced damages by more the 10% on average
 - In Ocean County, NJ wetland conservation reduces average annual losses by more than 20%

*Coastal Wetlands and Flood Damage Reduction: Using Risk Industry-Based Models to Assess Natural Defenses in the NE USA, 2016.

Community and Site Design Concepts

- Natural areas and open spaces should serve multiple functions (e.g., recreation, stormwater storage, filtration)
- Connect people to open areas through greenways and trails
- Preserve or mimic the natural hydrological functions of a site or drainage area
- Use urban streetscapes to provide ecosystem benefits in urban areas

The Practice of Green Infrastructure

Urban Forestry

- Trees provide enormous environmental, economic, and societal benefits
- Develop a tree planting program designed to maximize benefits
- To the extent possible, protect existing forested areas, particularly large specimen trees

The Practice of Green Infrastructure

Green Streets

- Key linking component in green infrastructure network
- Design dependent on local conditions but generally include
 - Alternative street widths
 - Swales
 - **Bioretention**
 - Permeable pavements
- Provides multiple benefits

clean road runof

Coos Bay, Oregon

Philadelphia Water Department

The Practice of Green Infrastructure

Environmental Site Design

- Place the site in context to greater community
- Preserve and enhance natural features
- Mimic or enhance existing hydrology
- Minimize impervious cover
- Key component of low impact development (LID)

TrockWorks Architectural Services

The Practice of Green Infrastructure

Low Impact Development Practices

Bioretention (Infiltration and Filtering)

- Rain gardens
- Bioswales
- Stormwater planters

Green Roofs (Storage and Evapotranspiration)

- Blue roofs
- Cisterns

Permeable Pavements (Infiltration)

- Porous asphalt/concrete
- Grass or gravel pavers
- Pavers

The Practice of Green Infrastructure

Stormwater runoff damaging coral reefs

https://oceanservice.noaa.gov/news/feb16/reef-to-ridge-conservation.html

Culebra, Puerto Rico

www.coast.noaa.gov/digitalcoast/training/low-impact

Community and Site Approaches and *The Practice of Green Infrastructure*

- Many studies on the effectiveness of these practices for
 - Reducing the heat island effect
 - Improving water quality
 - Recharging groundwater
 - Providing societal benefits
- For LID, flood reduction is a 'cobenefit'
 - City of Portland, OR reduced peak flow of stormwater runoff by 93%, cooling costs by 27%, and heating costs by 15%.

Shoreline Design Concepts

The Practice of Green Infrastructure

Natural or Nature-Based

- Dunes and beaches
- Vegetated features (salt marsh, wetlands, submerged aquatic vegetation)
- Oyster and coral reefs
- Barrier islands
- Maritime forest/shrub communities

Hybrid

- Natural and structural features
- Nonstructural
 - Floodplain policy and management
 - Flood proofing

Shoreline Approaches

The Practice of Green Infrastructure

Natural or Nature-based

Dune and Beach Creation

- Break offshore waves
- Attenuate wave energy
- Slow inland water transfer

Salt Marshes, Wetlands, Vegetation, Mangroves, SAV

- Break offshore waves
- Attenuate wave energy
- Slow inland water transfer
- Increase infiltration

Oyster and Coral Reefs

- Break offshore waves
- Attenuate wave energy
- Slow inland water transfer

Shoreline Approaches

The Practice of Green Infrastructure

Hybrid

http://sagecoast.org/info/information.html

- Blends both nature-based and structural approaches
- Derives benefit of wave energy dissipation from structural practices
- Derives ecosystem service benefits from nature-based practices

Landscape Approaches and Resilience

The Practice of Green Infrastructure

- Recent study on flood reduction benefits of mangroves:
 - A 500 meter wide mangrove forest can reduce wave heights by 50-100%
 - Mangroves reduce annual flooding to more than 18 million people.
 - Without mangroves, 39%
 more people would flood annually, increasing flood damages by 16% or \$82
 billion.

nature.org/GlobalMangrovesRiskReductionSummaryReport and nature.org/GlobalMangrovesRiskReductionTechnicalReport

Landscape Approaches and Resilience

The Practice of Green Infrastructure

Figure 4: The map shows where mangroves provide the greatest flood reduction benefits for property. The values represent the difference in annual expected damages in US \$ millions with and without mangroves per 100 km of coast.

nature.org/GlobalMangrovesRiskReductionSummaryReport and nature.org/GlobalMangrovesRiskReductionTechnicalReport

Shoreline Approaches and Resilience

The Practice of Green Infrastructure

Hurricane Irene, North Carolina

76% of bulkheads were damaged in the storm

No damage occurred to shorelines with or without sills

*Marshes with and without sills protect estuarine shorelines from erosion better than bulkheads during a Category 1 hurricane, 2014

Green Infrastructure and Resilience

The Practice of Green Infrastructure

Green Infrastructure Effectiveness Database								
This database is a compilation of literature resources documenting the effectiveness of using green infrastructure to reduce impacts from coastal hazards.								
🕄 Please fill in one or more fields below to narrow the search. Use quotes to search for an exact phrase. Return to basic search 🔺								
Title:	Enter a (partial) title	Green Infrastructure Type:	Coral reef 🗸					
Author(s):	e.g. author(s), comma separated	Hazards:	~					
Year published:	1980 2016	Methodological Approaches:	~					
Source:	e.g. journal name	Study Scale:	~					
Source Type:	~	Region:	Caribbean 🗸					
Keywords:	e.g. keyword(s), comma separated	State:	Puerto Rico 🗸					
			Clear form					
		Search						

coast.noaa.gov/digitalcoast/training/GI-database

Green Infrastructure and Resilience

The Practice of Green Infrastructure

Source:	e.g. journal name	Study Scale:		~		
Source Type:	~	Region:	Caribbean	~		
Keywords:	e.g. keyword(s), comma separated	State:	Puerto Rico	~		
				Clear form		
		Search				
1 resources found.				Sort by: Year Published •		
Community Based Coral Reef Rehabilitation in a Changing Climate: Lessons learned from hurricanes, extreme rainfall, and changing land use impacts						
🗂 2014 🖹 Peer reviewed 🛛 🚱 Caribbean Show						
Hernández-Delgado, E.A.; Mercado-Molina, A.E.; Alejandro-Camis, P.J.; Candelas-Sánchez, F.; Fonseca-Miranda, J.S.; González-Ramos, C.M.; Guzmán- Rodríguez, R.; Mège, P.; Montañez-Acuña, A.A.; Maldonado, I.O.; Otaño-Cruz, A.						
The worldwide decline of coral reefs can be slowed by low-tech coral farming and reef rehabilitation methods. Future threats such as climate change, increasing sea surface temperatures, sea level rise, and increasing storm severity will not only impact existing corals but will also impact the						
🕰 Reefs; Flood Percip; Flood Coastal; Field measurements; Erosion; Community outreach; Climate Change						

coast.noaa.gov/digitalcoast/training/GI-database

Green Infrastructure and Resilience

The Practice of Green Infrastructure

Source: e.g. jour	←	Share		
Keywords: e.g. key	Community Based Coral Reef Rehabilitation in a Changing Climate: Lessons learned from hurricanes, extreme rainfall, and changing land use impacts			
	Science: http://file.scirp.org/Html/6-1380299_50930.htm			
1 resources found.	& Keywords: Reefs; Flood Perci Change	p; Flood Coastal; Field measurements; Erosion; Community outreach; Climate		
	Basic Information			
Community Based Cora changing land use impa	AUTHOR(S)	Hernández-Delgado, E.A.; Mercado-Molina, A.E.; Alejandro-Camis, P.J.; Candelas-Sánchez, F.: Fonseca-Miranda, I.S.: González-Ramos, C.M.; Guzmán-Rodríguez, R.; Mège, P.;		
🛱 2014 📄 Peer reviewed		Montañez-Acuña, A.A.; Maldonado, I.O.; Otaño-Cruz, A.		
Hernández-Delgado, E.A.; Mei Rodríguez, R.; Mège, P.; Monta	YEAR PUBISHED	2014		
The worldwide decline of cora sea surface temperatures, sea	SOURCE	Open Journal of Ecology		
ৎ Reefs; Flood Percip; Flood (SOURCE TYPE	Peer reviewed		
United States Department of Commerce I		Hernández-Delgado, Edwin A., Alex E. Mercado-Molina, Pedro J. Alejandro-Camis, Frances Candelas-Sánchez, Jaime S. Fonseca-Miranda, Carmen M. González-Ramos, Roger		

coast.noaa.gov/digitalcoast/training/GI-database

Section 3

Implementing Green Infrastructure

Green Infrastructure Can Inform Planning

Implementing Green Infrastructure

Incorporate green infrastructure into planning efforts:

- Comprehensive
- Transportation
- Smart growth
- Watershed
- Conservation
- Hazard mitigation

- Stormwater
- Climate change adaptation
- Resilience
- Land use

Local Codes and Ordinances

Implementing Green Infrastructure

seagrant.wisc.edu/home/Portals/0/Files/Coastal%20C
ommunities/Green_Infrastructure/DRAFT_GIworkbook
_complete.pdf

Multiple Benefits

Implementing Green Infrastructure

- Have a plan
- Speak to their interests, not yours
- Explain the hazard risk and offer solutions
- Use multiple ways to communicate

Implementing Green Infrastructure

Implementing Green Infrastructure

coast.noaa.gov/digitalcoast/training/gi-animation

Implementing Green Infrastructure

Source: F. Ferrario, M.W. Beck, C.D. Storlazzi, F. Micheli, C.C. Shepard, and L. Airoldi, "The Effectiveness of Coral Reefs for Coastal Hazard Risk Reduction and Adaptation," *Nature Communications* (2014), doi: 10.1038/ncomms4794 © 2014 The Pew Charitable Trusts

www.pewtrusts.org/en/research-andanalysis/data-visualizations/2014/coral-reefsreduce-wave-energy-and-height

Infographics!

http://oceanwealth.org/resources/infographics/

Implementing Green Infrastructure

Implementing Green Infrastructure

Put Green Infrastructure between Your **Community and the Next Coastal Storm.**

There are many benefits.

Tidal and Forested Wetlands

- Slow waves
- · Filter and clean floodwaters Provide food and jobs

Green Streets

- Capture and clean stormwater
- Provide pedestrian-friendly walkways

Oyster and Coral Reefs

- Slow storm surge

Digital Coast

Sand Dunes

- · Buffer waves as a first line of defense · Build economy through tourism

- · Store floodwaters and recharge aquifers Increase property values
- · Beautify streets and encourage economic
- development

Office for Coastal Management

- Provide food
- Clean water

Open Space and Parks

- **Urban Trees**
- Reduce runoff and absorb floodwaters Shade and cool homes and businesses
- · Provide clean air and water

Living Shorelines

- Slow waves and reduce erosion
- Protect property

Here's What You Can Do to Protect Your Community.

Green infrastructure can have multiple functions and cost less than using only gray infrastructure.

Conserve Existing Natural Areas

Natural areas such as wetlands, dunes, and vegetated shorelines absorb storm surge waves, reducing damage to nearby homes and roads.

How do we know it works? A study after Hurricane Sandy showed that areas containing wetlands had less damage than those without. Wetlands prevented an estimated \$600 million in property losses.

Increase Your Community's Ability to Absorb Stormwater

- · Protect and plant trees.
- · Implement other practices such as green streets to keep stormwater from running into sewers, lessening the strain on existing systems.
- Use capital improvement projects as an opportunity to fund stormwater projects.

How do we know it works? The City of Portland, Oregon, used a combination of green roofs, green streets, trees, and rain gardens to reduce the peak flow of stormwater runoff by 93 percent, cooling costs by 27 percent, and heating costs by 15 percent.

Create Natural Shorelines

Create living shorelines using oysters, marsh grass, and other natural materials to absorb wave energy and reduce erosion.

How do we know it works? North Carolina properties that used natural shoreline protection measures withstood wind and storm surge during Hurricane Irene better than properties using seawalls or bulkheads.

Photo: Tracy Skrabal, North Carolina Coastal Federation

To learn more, visit coast.noaa.gov/digitalcoast/topics/green-infrastructure.

Office for Coastal Management Digital Coast

coast.noaa.gov/digitalcoast/training/gi-benefits

See the reverse of this page to learn more.

OFFICE FOR COASTAL MANAGEMENT

NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION

Funding for Green Infrastructure

Implementing Green Infrastructure

- US Environmental Protection Agency
- NOAA
- Federal Emergency Management Agency
- National Park Service
- National Endowment for the Arts
- US Department of Transportation
- Economic Development Administration
- National Recreation and Parks Association
- Funders Network for Smart Growth and Livable Communities
- Qualified Energy Conservation Bonds

Thank You!

Stephanie.Bennett@noaa.gov

OFFICE FOR COASTAL MANAGEMENT

NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION

